3n^2-7n-1000=0

Simple and best practice solution for 3n^2-7n-1000=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n^2-7n-1000=0 equation:


Simplifying
3n2 + -7n + -1000 = 0

Reorder the terms:
-1000 + -7n + 3n2 = 0

Solving
-1000 + -7n + 3n2 = 0

Solving for variable 'n'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-333.3333333 + -2.333333333n + n2 = 0

Move the constant term to the right:

Add '333.3333333' to each side of the equation.
-333.3333333 + -2.333333333n + 333.3333333 + n2 = 0 + 333.3333333

Reorder the terms:
-333.3333333 + 333.3333333 + -2.333333333n + n2 = 0 + 333.3333333

Combine like terms: -333.3333333 + 333.3333333 = 0.0000000
0.0000000 + -2.333333333n + n2 = 0 + 333.3333333
-2.333333333n + n2 = 0 + 333.3333333

Combine like terms: 0 + 333.3333333 = 333.3333333
-2.333333333n + n2 = 333.3333333

The n term is -2.333333333n.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333n + 1.361111112 + n2 = 333.3333333 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333n + n2 = 333.3333333 + 1.361111112

Combine like terms: 333.3333333 + 1.361111112 = 334.694444412
1.361111112 + -2.333333333n + n2 = 334.694444412

Factor a perfect square on the left side:
(n + -1.166666667)(n + -1.166666667) = 334.694444412

Calculate the square root of the right side: 18.294656171

Break this problem into two subproblems by setting 
(n + -1.166666667) equal to 18.294656171 and -18.294656171.

Subproblem 1

n + -1.166666667 = 18.294656171 Simplifying n + -1.166666667 = 18.294656171 Reorder the terms: -1.166666667 + n = 18.294656171 Solving -1.166666667 + n = 18.294656171 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + n = 18.294656171 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + n = 18.294656171 + 1.166666667 n = 18.294656171 + 1.166666667 Combine like terms: 18.294656171 + 1.166666667 = 19.461322838 n = 19.461322838 Simplifying n = 19.461322838

Subproblem 2

n + -1.166666667 = -18.294656171 Simplifying n + -1.166666667 = -18.294656171 Reorder the terms: -1.166666667 + n = -18.294656171 Solving -1.166666667 + n = -18.294656171 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + n = -18.294656171 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + n = -18.294656171 + 1.166666667 n = -18.294656171 + 1.166666667 Combine like terms: -18.294656171 + 1.166666667 = -17.127989504 n = -17.127989504 Simplifying n = -17.127989504

Solution

The solution to the problem is based on the solutions from the subproblems. n = {19.461322838, -17.127989504}

See similar equations:

| 8(z+2)-2(z-3)=(z-2)+3(z-3) | | 13q-19q--15q+4q=13 | | 14m-10m=16 | | 15+n=26 | | 13q-19q-15q+4q=13 | | 0.5logx=5-3logx | | (3y+2)(8+y)=0 | | p^2-6p+5= | | 32x-9=41x-45 | | 16x-(6x-3)=13 | | K^2-18k-63= | | 6q^2-6q=5q^2-8q+24 | | -12c--14c=-12 | | 9-45x+24= | | 14k-14k+k-k+2k=16 | | 9a+a=10 | | 7x-8=4x-11 | | 4+(3a-25)=(a+3)+a | | 2d-2d+2d=12 | | 7x^2+12x-34=0 | | 10(z+4)-3(z-1)=3(z-1)+3(z-2) | | 6z+z+5z-8z=20 | | -1+21=7 | | 6-8i/2-i=0 | | 10/-9= | | f(x)=2/x^3 | | 13x+11y=-5 | | 27x-12=18x+15 | | 8x-3x-x-2x+4x=18 | | 7b-3b=8 | | 13x+11y=5 | | 36=-3(24-m)+3(m-2) |

Equations solver categories